تشخیص آنامولی های TEC قبل از وقوع زلزله های بزرگ با استفاده از شبکه عصبی مصنوعی
نویسندگان
چکیده مقاله:
وقوع زلزله علاوه بر تغییر در هندسه و فیزیک پوسته زمین تأثیرات دیگری را نیز به همراه دارد. از آن جمله، تأثیر بر لایه یونسفر می‍باشد که خود را بهصورت تغییر در میزان الکترون، چگالی یونها، میدانهای الکتریکی و مغناطیسی این لایه نشان میدهد. هر پارامتر ژئوفیزیکی و ژئوشیمیایی در لایههای لیتوسفر، اتمسفر و یونسفر زمین که قبل از وقوع زلزله تغییراتی در آن پدید آید بهعنوان پیشنشانگر شناخته میشود. با پردازش دادههای GPS میتوان به میزان محتوای کل الکترون (Total Electron Content) لایه یونسفر دستیافت. در سیستمهای پیچیده و غیرخطی استفاده از روشهای کلاسیک مانند میانگین، برای بازشناسی الگو و پیشبینی سریهای زمانی بسیار دشوار است، به همین دلیل در این مقاله سعی گردیده است از روشهای هوش مصنوعی همچون شبکه عصبی مصنوعی برای تشخیص و بازسازی الگوی تغییرات TEC استفاده گردد. در همین راستا زلزله اهر آذربایجان شرقی (۲۱ مرداد ۱۳۹۱) و زلزله کاکی بوشهر (20فروردینماه 1392) مورد بررسی قرارگرفته است. ابتدا با استفاده از نرمافزار Bernese و به روش PPP(Precise Point Positioning) مختصات ایستگاهها محاسبه گردید و سپس با استفاده از مدل جهانی مقادیر TEC به دست آمد. نتایج حاصل، ناهنجاریهایی را چند روز قبل و بعد از زلزله نشان میدهد که بیانگر آن است که الگوریتم شبکه عصبی مصنوعی بهخوبی توانسته آنامولیهای موجود را آشکارسازی نماید. همچنین مقایسه مقادیر TEC بهدستآمده از ایستگاههای زمینی با مدل استاندارد جهانی از همبستگی بالایی برخوردار میباشند.
منابع مشابه
تشخیص آنامولی های tec قبل از وقوع زلزله های بزرگ با استفاده از شبکه عصبی مصنوعی
وقوع زلزله علاوه بر تغییر در هندسه و فیزیک پوسته زمین تأثیرات دیگری را نیز به همراه دارد. از آن جمله، تأثیر بر لایه یونسفر میباشد که خود را به صورت تغییر در میزان الکترون، چگالی یون ها، میدان های الکتریکی و مغناطیسی این لایه نشان می دهد. هر پارامتر ژئوفیزیکی و ژئوشیمیایی در لایه های لیتوسفر، اتمسفر و یونسفر زمین که قبل از وقوع زلزله تغییراتی در آن پدید آید به عنوان پیش نشانگر شناخته می شود. با...
متن کاملتشخیص آنامولی های TEC قبل از وقوع زلزله های بزرگ با تلفیق شبکه عصبی مصنوعی و الگوریتم بهینه سازی توده ذرات(PSO)
بحث پیشبینی زمینلر...
متن کاملتشخیص آنامولی های tec قبل از وقوع زلزله های بزرگ با تلفیق شبکه عصبی مصنوعی و الگوریتم بهینه سازی توده ذرات(pso)
بحث پیش بینی زمین لرزه به منظور کاهش تلفات و آسیب های آن از اهمیت بالایی برخورد ار است؛ به ویژه د ر منطقه لرزه خیزی مانند ایران که سالانه شاهد وقوع این پد ید ه طبیعی می باشد . تشخیص ناهنجاری های قبل از زلزله نقش بسزایی د ر این امر د اراست. تغییرات یونسفری که با اند ازه گیری های از راه د ور(مانند استفاد ه از سیستم تعیین موقعیت جهانی) قابل شناسایی هستند به پیش نشانگرهای یونسفری زلزله معروف می با...
متن کاملتولید شتابنگاشت مصنوعی زلزله با استفاده از شبکه عصبی فازی
نیاز روزافزون به تحلیل دینامیکی تاریخچه زمانی و عدموجود شتابنگاشتهای مناسب در مناطق مختلف، تولید شتابنگاشتهای مصنوعی سازگار با طیف طرح را ضروری میسازد. هدف اصلی این تحقیق ارائه روشی نوین، بر اساس تبدیل بسته موجک و روش های هوش مصنوعی برای تولید شتابنگاشت مصنوعی زلزله سازگار با طیف طرح بر اساس مقدار بزرگا، فاصله از گسل و طیف مربوطه می باشد. در این تحقیق از شبکه های عصبی فازی و آنالیز موجک پک...
متن کاملتشخیص آنومالیهای حرارتی قبل از وقوع زلزله با تلفیق الگوریتمهای شبکة عصبی مصنوعی و بهینهسازی کلونی مورچه
ازآنجا که تشخیص آنومالیهای لرزهای بهدلیل ساختار پیچیدة زمین و عدم شناخت کامل سازوکار وقوع زلزله، دشوار است، دسترسی به دادههای حرارتی متنوع بهدستآمده از روشهای سنجش از دوری سبب شده تا امکان بررسی آنومالی حرارتی قبل از وقوع زلزلههای بزرگ فراهم شود. آنومالیهای حاصل از پیشنشانگرهای حرارتی، از اصلیترین منابع پیشبینی زلزلهاند. در این مطالعه با استفاده از پیشنشانگرهای دمای سطح (Land Surf...
متن کاملتشخیص آنومالی های حرارتی قبل از وقوع زلزله با تلفیق الگوریتم های شبکة عصبی مصنوعی و بهینه سازی کلونی مورچه
ازآنجا که تشخیص آنومالی های لرزه ای به دلیل ساختار پیچیدة زمین و عدم شناخت کامل سازوکار وقوع زلزله، دشوار است، دسترسی به داده های حرارتی متنوع به دست آمده از روش های سنجش از دوری سبب شده تا امکان بررسی آنومالی حرارتی قبل از وقوع زلزله های بزرگ فراهم شود. آنومالی های حاصل از پیش نشانگرهای حرارتی، از اصلی ترین منابع پیش بینی زلزله اند. در این مطالعه با استفاده از پیش نشانگرهای دمای سطح (land surf...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 4
صفحات 49- 58
تاریخ انتشار 2016-06
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023